Course title: Fundamentals of Drug Development

Course objective: The course will cover the main aspects of the drug development process and will expose students to the essential activities of drug development in industry, from discovery, through to preclinical development, clinical development, manufacturing and regulation. At the end of the course, the students will be familiar with the terminology and main stages in drug development in an industry setting.

Lectures will be given in English by experts from Teva and from the BLAVATNIK CENTER for Drug Discovery at Tel Aviv University.

MSc and PhD students, and 3rd year undergraduate students from pharmacy, life sciences, and medicine

Academic year: 2021-2022
Semester: A
Course Format: 13 lectures via Zoom in English; each lecture 1.5 hr – 2 academic points *
Course prerequisites: none
Course syllabus: see below
Attendance requirement: 70%
End of course student evaluation: Final exam
Academic department overseeing the course: Pharmacology, School of Pharmacy
Course coordinator from the University: Prof. Uri Wormser, Hebrew University of Jerusalem, wormser@cc.huji.ac.il
Course coordinator from Teva: Dr. Sara Shnider sara.shnider@tevapharm.com
• Topics to be covered in the course:

1. **Introduction to Drug Development**: Introduction to the drug development process from planning to execution and probability of success; introduction to the functions/teams involved at different stages of drug development; overview for the rest of the course in which we will dive deeper into each of the stages;

2. **Preclinical pharmacology**: The role of preclinical research in drug development in industry and its importance for the clinical development stages and for the regulatory requirements; understanding the therapeutic potential of a therapy in development, examples of experiments and the relevance of animal models.

3. **Early stage drug discovery, bioassay development and high throughput screening**: Early stages of drug discovery, methods to investigate biological activity, and approaches for high throughput screening.

4. **The role of medicinal chemistry in drug discovery and development**: Characteristics of molecules with medicinal potential; selection and optimization processes; natural molecules as a source of new drug candidates.

5. **Preclinical safety**: Introduction to the main topics in toxicology and absorption, distribution, metabolism and excretion (ADME); objectives of the toxicology studies, the stages, the regulatory and clinical requirements; emphasis will be placed on studies that cannot be performed in humans (for example, carcinogenicity, reproductive toxicology); learn the relevant terminology, such as Good Laboratory Practice (GLP).

6. **Planning a clinical trial**: Learn terminology such as clinical development plan (CDP) and target product plan (TPP); planning advanced phases (2-4) of clinical trials, biomarkers, protocols and regulatory approvals, the placebo effect, criteria for participation in a clinical trial.

7. **Clinical pharmacology**: Pharmacokinetics and pharmacodynamics; the regulatory requirements for a clinical pharmacology program and examples.

8. **Analytics and big data**: Introduction to the role of technology, big data and analytics for drug development and clinical monitoring; use of sensors and wearables; digital biomarkers and predictive models.

9. **Planning a clinical trial**: Familiarity with terms such as clinical development plan (CDP), target product plan (TPP), planning clinical trials in advanced phases (2-4), biomarkers, protocols and regulatory approvals, the placebo effect, criteria for participation in a clinical trial.
10. **Introduction to development of biologics and biosimilars:** The stages involved in developing a biologic as compared to a small molecule drug; comparison of the processes for developing biologics as compared to biosimilars; the stages and challenges in developing biosimilars.

11. **Regulatory Affairs:** Introduction to the regulatory requirements at different stages of drug development from discovery to marketing; requirements of the regulatory authorities in the US and Europe; strategies and regulatory challenges.

12. **Intellectual property (IP) and legal aspects of drug development in the pharmaceutical industry**

13. **Metabolite medicine:** Use of metabolic products as potential therapeutic molecules; advanced analytic methods for profiling metabolites (metabolomics).

Reading:
- http://www.fda.gov/ForPatients/Approvals/Drugs/default.htm
- http://www.fdareview.org/index.shtml
- Introduction to nonclinical safety testing:
 - ICH M3(R2) guideline. 11 June 2009.
- Regulatory Affairs:
 - Communication from the Commission 2010/C 82/01 — Detailed guidance on the request to the competent authorities for authorisation of a clinical trial on a medicinal product for human use, the notification of substantial amendments and the declaration of the end of the trial (CT-1), March 2010
 - US Code Title 21, Part 312, Investigational New Drug Application, April 2012
 - FDA Guidance for Industry: Formal Meetings Between the FDA and Sponsors or Applicants, May 2009
 - European Commission: Notice to Applicants Vol. 2A: Procedures for marketing authorisation, June 2013
• The CDER Handbook, produced by the Department of Health and Human Services, Food and Drug Administration, March 1998
• Beishon M., Approval rating: how do the EMA and FDA compare?, 12 I CancerWorld I January-February 2014
• Navigating the Regulatory Landscape for Healthcare Product Development: Key principles and best practices, MaRS Discovery District, October 2012